Extending the Applicability of Association Rules

نویسندگان

  • Karthick Rajamani
  • Sam Yuan Sung
  • Alan L. Cox
چکیده

An important issue that needs to be addressed when using association rules is the validity of the rules for new situations. Rules are typically derived from the patterns in a particular dataset. When the conditions under which the dataset has been obtained change, a new situation is said to have risen. Since the conditions existing at the time of observation could aaect the observed data, a change in those conditions could imply a changed set of rules for a new situation. Using the set of rules derived from the dataset for an earlier situation could lead to wrong decisions. In this paper, we provide a model explaining the diierence between the sets of rules for diierent situations. Our model is based on the concept of rule-generating groups that we call caucuses. Using this model, we provide a simple technique, called Linear Combinations, to get a good estimate of the set of rules for a new situation. Our approach is independent of the core mining process, and so can be easily implemented with any speciic technique for association rule mining. In our experiments using controlled datasets, we found that we could get up to 98.3% accuracy with our techniques as opposed to 26.6% when directly using the results of the old situation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Introducing an algorithm for use to hide sensitive association rules through perturb technique

Due to the rapid growth of data mining technology, obtaining private data on users through this technology becomes easier. Association Rules Mining is one of the data mining techniques to extract useful patterns in the form of association rules. One of the main problems in applying this technique on databases is the disclosure of sensitive data by endangering security and privacy. Hiding the as...

متن کامل

Using a Data Mining Tool and FP-Growth Algorithm Application for Extraction of the Rules in two Different Dataset (TECHNICAL NOTE)

In this paper, we want to improve association rules in order to be used in recommenders. Recommender systems present a method to create the personalized offers. One of the most important types of recommender systems is the collaborative filtering that deals with data mining in user information and offering them the appropriate item. Among the data mining methods, finding frequent item sets and ...

متن کامل

Developing a Course Recommender by Combining Clustering and Fuzzy Association Rules

Each semester, students go through the process of selecting appropriate courses. It is difficult to find information about each course and ultimately make decisions. The objective of this paper is to design a course recommender model which takes student characteristics into account to recommend appropriate courses. The model uses clustering to identify students with similar interests and skills...

متن کامل

Extending the Qualitative Trajectory Calculus Based on the Concept of Accessibility of Moving Objects in the Paths

Qualitative spatial representation and reasoning are among the important capabilities in intelligent geospatial information system development. Although a large contribution to the study of moving objects has been attributed to the quantitative use and analysis of data, such calculations are ineffective when there is little inaccurate data on position and geometry or when explicitly explaining ...

متن کامل

Employing data mining to explore association rules in drug addicts

Drug addiction is a major social, economic, and hygienic challenge that impacts on all the community and needs serious threat. Available treatments are successful only in short-term unless underlying reasons making individuals prone to the phenomenon are not investigated. Nowadays, there are some treatment centers which have comprehensive information about addicted people. Therefore, given the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999